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THE METHOD OF DISCRETE SINGULARITIES IN PLANE PROBLEMS 
OF THE THEORY OF ELASTICITY* 

S.M. BBLOTSF.REOVSEII, I.K. LIFANOV, and M.M. SOLDATOV 

Plane problems of the theory of elasticity are reduced to sets of singular 
integral equations for which a direct method of solution is developed, 
similar to the method of discrete vortices used in aerodynamics. Numerical 
solutions of a number of plane problems of the theory of elasticity are 
considered, stable numerical solutions are obtained, and their convergence 
is proved. 

When solving problems of the theory of elasticity by reducing them to integral equations, 
the tendency usually was to get away from the singular integral equations (SIE), and to reduce 
them to regular integral equations of the first or second kind /1,2/. A similar situation 
occurs when solving other problems, for example, in electrodynamics /3/. It appeared, however, 
that numerical solutions of regular integral squations of the first kind on a computer were 
unstable. Regular integral equations of the second kind, obtained in the theory of elasticity, 
possesseigenfunctions /2/, and therefore their numerical solution on a computer by direct 
methods is also unstable. In view of these inconveniences in reducing the problems toregular 
integral equations, they are reduced to SIE, for which a stable method (the method of"dfscrete 
vortices" /4/) for their numerical solution has been developed. 

Below, a similar approach is developed for solving plane problems of the theory of elas- 
ticity. These problems for bounded simply connected regions, whose boundary is a closed 
Liapunov curve, are reduced to SIF, of the first kind with Hilbert kernels in complex conjugate 
functions. The conditions are obtained that ensure the uniqueness of the solution of these 
equations. The equations are solved numerically using the method of discrete singularities, 
which is a development of the method of discrete vortices. The idea of this method consists 
in exchanging the set of SIE for a set of linear algebraic equations in unknown functions 
with boundary points selected in some special way, and special.ly situated in relation to points 
at which the values of the required functions are found. 

*Prikl.Matem.Mdchan ,47,5,781-789,1983 
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The numerical solution of the second basic problem (the stresses are given on theboundary) 
is specifically considered for a circle for various loads , either continuous or concentrated 
at a finite number of points of application of the forces. Stable numerical solutions are 
obtained for these when there is one or more axes of symmetry, as well as when there is none, 
and the convergence of the solutions is proved. A new method is developed which is convenient 
for computer calculation for solving overspecified sets of linear algebraic equations that 
replace SIE. 

1. The solution of plane problems of the theory of elasticity when there are no volume 
forces reduces to determining two analytic functions /2,5/ (e.g., cp,$), that satisfy the 
boundary condition 

%k(P tt) - trp’ -m = fk (t), t E L, k = 1, 2 (1.1) 

on the contour L bounding the region D. If condition (1.1) is defined in displacements, then 
k-&x,=x where the quantity x is defined in /2/, and 

fl = 2 P (u + iv) (1.2) 

where p is the shear modulus and u,u are the displacements. If condition (1.1) is specified 
in stresses, then k = 2,x% = -1 and 

fs=- i (am -t. to,) ds + CI (1.3) 

(the notation is given in /2/). 

2. It is proposed to seek the analytic functions ~(Z),@(Z) in the form 

E~--I*)‘(t) dt, 2,eD 

t-z 
L 

(2.1) 

where the auxiliary function w(t) is obtained fmrn (1.1) in the form of the integral equation 

Xk - e ‘k 
- 0 (t) + '23i; 2 +$+&$p- +&Scoe)d(-+=+fk(t) 

L L 

with the complex parameter c whose selection enables the problem to be reduced to various 
types of equations. 

When c = -xk we obtain the Fredholm integral equation due to Muskhelishvili /5/. 

sckco(t)+&SO(r)d(h$+&S~d(+$)=f~(t) 
L L 

(2.2) 

(2.3) 

A direct solution of Eq.(2.3) by the method of mechanical quadratures is difficult due 
to the presence of an eigenfunction, which results in a degenerate set of linear algebraic 
equations and to unstable values of the unknown function. 

Similar difficulties occur when the problem is reduced to other regular integral equations 
of the Muskhelishvili and Sherman and Lauricelli type /2,6/. Various methods were considered 
for eliminating this difficulty /2/, e.g. fixing o at some points and eliminating thecorresp- 
onding equations, and the use of the error of quadratic formulas to imprwe the structure of 
the algebraic equation. 

When c=o, Eq.(2.2) becomes a degenerate SIE of the second kind. A non-degenerate SIE 
of the second kind can be obtained, for instance, when c =i. Here we investigatethe red- 
uction to a SIE of the first kind, which is possible when c= xk. Then, we obtain from (2.2) 

(2.4) 

Note that SIE (2.4) is an equation with a Hilbert kernel. 
Indeed, let the region D be simply connected and the contour L that bounds it be smooth 

(a Liapunov one), i.e. its parametric equation z= z(n),g- B (9) is such that z (rl), Y (rl), r'(s) and 
#'(rl) are 2n-periodic functions belonging to the HBlder class /7/. Note that 

(2.5) 

As follows from /J/, the function B(q,E) belongs to the Htilder class. It can be shown 
that it is periodic in '1 and E of periodic 2x and B (E. &) = 0.5. This implies that the kernel 
of (2.5) can be represented in the form of the sum of a Hilbert kernel and a regular kernel. 

3. We shall investigate the properties of SIE (2.4) when L is a circle. On a circle SIE 

(2.4) has the form 
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(3.1) 

For the internal problem in stresses the vector of the external forces and the vector of 
the moment must vanish. Hence Eq.(3.1) must be supplemented by conditions on its right-hand 
side. The condition for the vector of the external forces to vanish requires uniqueness of 

fr Gh in whose presence it is automatically satisfied. For the function frr to be unique 
its periodicity in L is necessary, then 

fm (0) - fr (L) (3.2) 
and in problems on a circle 

f* (E) = fa (2nk + E);k = 0, *I, *2, *** (3.3) 

It is evident from (3.1) that condition (3.3) does not impose restrictions on the function 
0. 

The condition for the vector of the moment of the external forces to vanish /2/ 

Re frddt=O 5 (3.4) 

on a circle reduces, in relation to the function o, using (3.1) for Xt - XI = - 1, to the 
relation 

-iR~~~~~+w(rl)~~“ldllrS~)dr, t==R& 
cl 

where on the left-hand side we have a purely imaginary expreasion for all o; hence condition 
(3.4) does not impose any restrictions on o. 

Continuing the investigation of the problem on a circle, we see that the homogeneous 
equation (3.1), when fka 0, has eigensolutions whose form is established, for example, from 
the representation of o(q) in the form of a Fourier series. Theeiqenfunctions of the hom- 
ogeneous equation (3.1) and (2.4) are the complex constant 

o=a+ib (3.5) 

and, when k = 2 the function 
0 (n) = ia,e** (3.6) 

for the homogeneous equation (3.11, and for Eq.(2.4) the function 

0 (T) = ia,z 

To obtain a problem defined uniquely, it is necessary to proceed either as in /2/ or, as 
proposed below, the SIE must be solved together with some supplementary conditions that"wil1 
not pass" the eigenfunctions (3.5) and (3.6). The following conditions have this property: 

s id%& 
‘c 

L 

=O, k-1.2; l;+d7+$j$df]=O, k=2 

L 

(3.7) 

Sherman /2,6/ introduced as supplementary terms, the left-hand sides of Eqs.(3.7) in 
integral equations of the type (2.3) to ensure the uniqueness of the solution. On a circle 
conditions (3.7) are written as 

IX 

s o(q)dq=O, k-l,2 (3.8) 
0 

21T 
Im 5 me*qdq -0, k-2 

II 

and, consequently, o in the form (3.5) does not satisfy the first of Eqs.(3.8), and in the 
form (3.6) it does not satisfy the second of Eqs.(3.8). 

Besides, Fq.(3.1) has the property that the integral with respect to E from 0 to 2n 
on the left-hand side is zero, and consequently the right-hand integral of (3.11 must also 
be zero m 

1 fr(Q&=O (3.9) 
0 

which results in the requirement that the real, as well as the imaginary parts of function fh 
must be zero. Condition (3.9), when solving the problem in stresses, determines the complex 
constant ca in (l-3), and when solving the problem in displacements, relation (3.9) is aut- 
omatically satisfied for the function frwhich is analytic in the region D and continuous on 
L. For the circle, condition (3.4) leads to the relation 
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5 (IR SinE-fwsE)a=o (fs=fR .+ ifi) (3.10) 
0 

For an arbitrary smooth contour L, by integrating (24) with respect to E, the parameter 
of the given contour L, we obtain the relation 

s 
fr(f)d&=O (3.11) 

which is similar to condition (3.9) on the circle. 
Thus the second basic problem for a region bounded by a closed smooth contour L reduces 

to the integral equation (2.4) and conditions (3.2),(3.4),(3.7), and (3.11) from which the - 
function ois determined, and when L is a circle, respectively to (3.1),(3.2), and (3.8)-(3.101, 
where the SIE has a singularity of the form ctg I(? - U/21. This singularity of the SIE is 
preserved as shown above, in problems of arbitrary regions bounded by a smooth contour, but 
the regular part of the SIE changes. 

4. We shall demonstrate the method of discrete singularities for Eq.(3.1) supplemented 
by conditions (3.31, and (3.8)-(3.101, setting k = 2, i.e. xk = -1. For this we separate 
the real and imaginary parts in (3.1) and (3.8). We obtain the set of equations (the integrals 
are taken from O-to 2~) 

~oR(?)[%! ~-sin(tl-tO]drl+S~~(rl)cos(rl$.E)drl= %rO 

SOg(t))ccs(q+E)d?-!- S01()1)[c~~i-sin(rl+E)]d9=-22nf~O 

SM)dtl=-O, SMn)drl=o 

S[os(tl)sintl --r(tl)~sddtl=O 

where the subscript R denotes the real part of the respective function and I 
part. 

(4.1) 

the imaginary 

Let us, first, assume that the functions Is(q) and II(q) belong to the Hzlder class on 
10, 2nl. Let the points Q (i = I,...,@, taken as points of a unit circle, divide the circle 

into n equal parts, and the points fj be the midpoints of the arcs wrlt+1* We now replace 
the set of integral equations (4.1) for k= 2 by the following set of linear algebraic equ- 
ations: 

(4.2) 

where the summation is carried out over i from 1 to n, and &,& and & are regularizing 
factors /8/. 

Without the unknown fJ,, b and b, (4.2) is overspecified (i.e. the number of equations 
is greater than the number of unknowns) and may generally be incompatible due to computational 
errors. However, even if it is compatible, it is difficult to find the three equations that 
must be rejected for it to become definable. The introduction of the unknowns &, & and a 
makes the system determinate and non-degenerate. The factors flr,fi, and & approach zero as 

n+ce if and only if conditions (3.9) and (3.10) are satisfied. 
Summing the first n equations of (4.2), we obtain 

(4.3) 
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D 

so = c cosej$- ) 
j==l 

where the sums Sai,Sei,So are zero for odd n and approach zero as R-03 for arbitraryn, since 
they approximate the respective integrals. By virtue of condition (3.9) the sum on the right- 
hand side of (4.3) also approaches zero as n+oo. 

We thus find that (4.3) can be written in the form 

B1+elB,=q;al,a,-O as n-m (4.4) 

Similarly, swmaing the following n equations, we obtain 

A+ aret = q; al), a,- 0 as n - 00 (4.5) 

If we now multiply the first n equations by cosEJ(j=i...., n) and the second n equation by 
sineJ(/= i, . . . . n), and add all 2n equations, taking condition (3.1) into account, we obtain 

a& + *B, + (i + a& = aI (4.6) 
aI. cr(, eTI cr, -Oasn-co 

Frcun Eqs. (4.4)-(4.6) we obtain the statement concerning &,@, and $a made above. 
Note that the regularizing factors PI, p, and &, can be introduced in other ways so that 

the condition for them to approach zero as n+ 00 is satisfied, and the system remains non- 
degenerate. For instance, we can take 
(2% + fJ) h (h + El)' b 

6%. EJp¶ and ~J’b, in the first n equations, and pl, 
in the subsequent n equations. 

The approximation of the integral with ctg[(q-E)/2] on the segment 10,2n] by the sums con- 
sidered above follows frcm /8/. From the same paper it follows that for a characteristic SIE 
of the first kind with kernelctg l(n -'@/21Eqs.(4.2) can be similarly transformed into a set 
of linear algebraic equations for the regular Fredholm equation of the second kind, which has 
a unique solution, since Eqs.(4.1) have a unique solution. From this we obtain that Eqs.(4.2) 
are non-degenerate and their solution approaches the solution of integral equations (4.1).Then, 
if fR(Q and jr(E) belong to the classH(a)/5/ and n is an arbitrary positive integer, we have 

If however, n is odd and je(r)(&),j#)(E) belongs to the class H(a), it follows from /7/ that 
on the right-hand sides of inequalities (4.7) there are quantities of the order of (l~n)/nl+d. 

In the problem of loading by concentrated forces applied uniformly over a circle the 
functions js(E) and jr(f) have discontinuities of the first kind at the points where the 
forces are applied. The calculation points &J were located at these points, where the arith- 
metic mean of the one-sided limits for fR(g) and fl(E)were taken. The remaining points EJ 
divided the circle into equal parts, and the points ~1, i = I,..., n were taken in the middle 
of these parts. 

When the problem has axes of symmetry, the set of integral equations (4.1) can be trans- 
formed into a set of SIE of the first kind on a segment: some or all of the integral conditions 
on aare then satisfied. When solving the set of SIE numerically along the segment, it is 
necessary to observe the following rule for the arrangement of the calculation points EJ and 
discrete singularities qr on the segment of integration. This was obtained for one SIE of the 
first kind on the segment from heuristic considerations and numerical calculations in /4/ and 
was mathematically justified in /9/. Closest to the end of the segment at which the solution 
is unbounded is a discrete singularity, while nearest to the end of the segment at which the 
solution is bounded is a calculation point. In the case of (2.4) in the functions OR and WI, 
this rule must be applied in each equation with respect to that unknown function for which 
this equation is singular. 

Thus, generally, it is necessary to take for ma and oz their proper sets of Points %I 
and Qt. Examples of numerical solutions of (4.2) are given in Figs.1 and 2. 

A stable calculation and good convergence were obtained in all cases when the order of the 
system investigated was increased from 30 to 110. This was confirmed by comparison with the 
exact solution. 

5. As an example, a continuous load was considered for which in Eqs.(4.1) the right-hand 
sides are the trigonometric functions fs=sinE. fl=cos& (problem 1). In that case the functions 

es= sin1). o,=cosn are exact solutions of Eqs.(4.1). These values were compared with the 
results obtained for this problem using the method of discrete singularities. Solution of Eqs. 

(4.2) for all n>3 (with nm.,==54), when the general order N of Eqs.(4.2) was equal to 2n-i3, 
yielded the following results: the values of o.,a,o,r at the points at which they are defined 

are the same as the analytic solutions, and the regularizing factors PI,p,,p3 are zero. 
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The numerical experiment has, thus, shown the absolute convergence of the method of 
discrete singularities for Eqs.(4.1) with the continuous right-hand side considered. 

We then considered loading the circle by two concentrated loads applied at diametrically 
opposite points (problem 2, Fig-l). This problem 

W 

0.3 

0 

-0.2 

Fig. 1 Fig. 2 

was solved by the method of discrete singularities both by introducing three regularizing 
factors (Eqs.(4.12)), and by emitting one calculation point away frcm the points of discon- 
tinuity on the right-hand side of the system, which enables only one regularizing factor to 
be introduced. Both solutions are virtually the same, possessing good convergence with res- 
pect to N=2n+3. Calculations in which three regularizing factors are introduced are 
shown in Fig.1, where curves 1,2,&d correspond to the functions eR,eI,bez~eI, +Jea, and 

Aoe, Ael are respectively the remainders of the function8 eIRtenI calculated for nmu and 

the current n. 
The solution of problem 2 is even for the function es(rl) and odd for the function e~(ti. 

Taking this into account, we reduce (4.1) to a set of SIB on the segment [O,nl 

ain E{S os((l)[(cosn- Eosf)-'+cosql~+S~~(~)sinrhj=-nf~~) (5.1) 

ma ES 0s (11) ~rldtl+Sol('l)[(~an-- e)-'-~~l ain* = sfs (t) 

S oR(~)d~=o 
where the last two of the three integral conditions in (4.1) are now identically satisfied. 
The application of the method of discrete singularities to Eqs.(5.1) requires the rule defined 
above for the arrangement of calculation points and discrete singularties to be satisfied. 

Comparison of the solutions of Eqs.(5.1) and (4.2) for problem 2 shows good agreement 
of the functions Q and e,,r for corresponding n, and also their rapid convergence with 
respect to n. 

Problem 2 may be reduced to a set of SIE on the segment IO, n/21, if the property of 
symmetry of e1 and reverse symmetry of e, about the vertical axis is used. 

Taking these properties into account , we can reduce Eqs.(S.l) to a set of SIE on the 
segment lo, s/21 for problems on a circle with two perpendicular axes of symmetry 

sin~{S~R('l)~~[(~a~~~ssE)-r+~ldrl +I ol(tl)siandrl]=--+&) (5.2) 

Equations (5.2) do not contain supplementary integral conditions, 
taking the two axes of symmetry into account, are satisfied identically. 

since now all of them, 

The loading of the circle by three equal concentrated radial forces applied at equal 
distances frcrm one another (problem 3, Fig.21 was also considered. In this case, the solution 
of Eqs.(4.2) was derived using the method of discrete singularities , where the right-hand side 
of the equations was determined taking condition (3.9) into account. The solution and its 
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convergence with respect to N are shown in Fig.2 , where the notation for the curves is the 
same as in Fig.1. With the obvious selection of the origin of the coordinate E , thisproblem 
has a horizontal axis of symmetry relative to which the function (OR is even and or odd. This 
enables problem 3 to be reduced to Eqs.(S.l). 

6. If the first basic problem is considered on the circle, i.e. the displacements are 
specified at the boundary, it is necessary to consider another system instead of Eqs.(4.1), 
since the function (3.6) is not aneigenfunction of the homogeneous equation (3.1) when X* = 
f 1 (integration is carried out in the limits 0 to 2%) 

SOR(rl)[XIctg~+sin(~+E)](trl- (6.1) 

s W(rl)cca('1 +g)G=- Wr(D 

- mR('l)cca(T)+~)d~+ s 

s 1 
W(Q) 0%; ctgq-sin(q +Q] dq=2sf,~ (Q 

S~R(r))+U, SWWn=O 

when condition (3.9) is imposed on the right-hand sides. This set of equations has a unique 
solution for any x,qh*t. The points ni and El must be selected as above. This results 
in the set of linear algebraic equations 

(6.2) 

where the suzmaation is over i from 1 to n. 
As regards the regularizing factors g, and p,,. the convergence of the solution of Eqs. 

(6.2) to that of Eqs.(6.1), and also the stability of solution (6.21, statements similar to 
those made in Sect.5 for the second basic problem, are true in this case. 

Problems for any simply connected regions whose contour is smooth with a parametric eq- 
uation satisfying the conditions described in Sect.2, can be solved similarly. For the 
solution it is only necessary to know the parametric specification of the contour of the 
region. 

1. 
2. 

3. 
4. 

5. 
6. 

7. 
8. 

9. 

REFERENCES. 

Development of the Theory of Contact Problems in the USSR. Moscow, NAUEA. 1976. 
PABTON, V.E. and PEBLIN, P.I., The Integral Equations of the Theory of Elasticity. Moscow, 
NAUEA, 1977. 

Computational Methods in Electrodynamics. Moscow, MIX, 1977. 
BELOTSEBEOVSlUI, S.M., AThinLiftingSurface in a Subsonic Stream of Gas, Moscow, NAUEA, 
1965. 

MUSBEELISEVILI, N-I., Some Basic Problems in the Theory of Elasticity. Moscow, NAUEA, 1966. 
SBEZMAN, D.I., On a method of solving certain problems of the theory of elasticity for 
doubly connected regions. Dokl. AN SSSR, Vol.55, No.~., 1947. 

MUSEEELISBVILI, N-I., Singular Integral Equations. MOSCOW, NAUKk, 1968. 
LIFANOV, I-K., On the incorrectness and regularisation of numerical solutions of singular 
integral equations of the first kind. Dokl. AN SSSB, V01.255, No.5, 1980. 

LIFANOV, I.K., On singular integral equations with one-dimensional and multiple Cauchy 
type integrals. Dokl. AN SSSB, Vo1.239, No.2, 1978. 

Translated by J.J.D. 


